.. _recipes_climate_patterns: Generating Climate Patterns from CMIP6 Models ============================================= Overview -------- The recipe recipe_climate_patterns generates climate patterns from CMIP6 model datasets. .. note:: The regrid setting in the recipe is set to a 2.5x3.75 grid. This is done to match the current resolution in the IMOGEN-JULES model, but can be adjusted with no issues for a finer/coarser patterns grid. Available recipes and diagnostics --------------------------------- Recipes are stored in esmvaltool/recipes/ * recipe_climate_patterns.yml Diagnostics are stored in esmvaltool/diag_scripts/climate_patterns/ * climate_patterns.py: generates climate patterns from input datasets * sub_functions.py: set of sub functions to assist with driving scripts * plotting.py: contains all plotting functions for driving scripts User settings in recipe ----------------------- #. Script climate_patterns.py *Required settings for script* None *Optional settings for script* * jules_mode: output jules-specific var names + .nc files * parallelise: parallelise over models or not * area: calculate the patterns globally, or over land only *Required settings for variables* * short_name * additional_datasets *Optional settings for variables* None *Required settings for preprocessor* * monthly_statistics: converts data to mean monthly data *Optional settings for preprocessor* * regrid: regrids data Variables --------- #. Script climate_patterns.py * tasmax (atmos, monthly, longitude latitude time) * tasmin (atmos, monthly, longitude latitude time) * tas (atmos, monthly, longitude latitude time) * huss (atmos, monthly, longitude latitude time) * pr (atmos, monthly, longitude latitude time) * sfcWind (atmos, monthly, longitude latitude time) * ps (atmos, monthly, longitude latitude time) * rsds (atmos, monthly, longitude latitude time) * rlds (atmos, monthly, longitude latitude time) Observations and reformat scripts --------------------------------- None References ---------- * Huntingford, C., Cox, P. An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dynamics 16, 575–586 (2000). https://doi.org/10.1007/s003820000067 * Mathison, C. T. et al. A rapid application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME). EGUsphere [preprint], (2024). https://doi.org/10.5194/egusphere-2023-2932 Example plots ------------- .. _fig_climate_patterns_2: .. figure:: /recipes/figures/climate_patterns/patterns.png :align: center :width: 80% Patterns generated for CMIP6 models, gridded view. Patterns are shown per variable, for the month of January.